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A composite hydrodynamic-diffusion model of the arterial wall is presented to 
describe the vesicular transport of relatively inert macromolecules across the 
inner endothelial lining of the larger arteries of humans and animals and their 
subsequent diffusion in the underlying tissue of the intima and media. This model 
is motivated by the highly specialized ultrastructure of the arterial wall observed 
in electron microscopic studies and the recent experimental measurements of the 
time-dependent uptake of labelled macromolecules in animal arteries under 
carefully controlled in witro conditions. The proposed dynamic model for the 
vesicular transport across the endothelial cell layer considers the constrained 
Brownian diffusion of 700 vesicles subject to long-range hydrodynamic and 
short-range London-van der Waals force interactions with the plasmalemma 
membranes of the endothelial cell. Approximate solutions are developed for the 
motion and the steady-state vesicle density distribution near the plasmalemma 
and in the interior of the cell using boundary-layer-like methods. The model for 
the vesicular transport just described appears as a novel boundary condition in 
the basic diffusion model for the underlying tissue. The latter is treated as a two- 
phase medium comprised of an interstitial fluid continuum with a uniformly 
dispersed smooth muscle phase as first proposed by Hills (1968). This model for 
the underlying tissue assumes that the smooth muscle cells contribute insigni- 
ficantly to the macromolecule diffusion across the arterial wall but act as the 
principal storage reservoir for the macromolecules for large diffusion times 
because of their large volume fraction. The dimensionless parameters that arise 
in the theoretical model are determined by comparing the solutions for the time- 
dependent total wall uptake with Fry’s (1973) experimental data for canine 
carotid artery. 
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1. Introduction 
The passage of macromolecules across the arterial endothelium and their 

transient uptake by the underlying arterial wall substance have been the subject 
of numerous in vivo and in vitro experiments, e.g. by Adams, Morgan & Bayliss 
(1970)) Bell, Adamson & Schwartz (1974), Bell, Gallus & Schwartz (1974), Somer 
& Schwartz (1971), Fry (1968, 1972, 1973), Caro, Fitz-Gerald & Schroter (1971), 
Caro (1973, 1974), Caro & Nerem (1973) and Caro, Siflinger & Parker (1975), 
numerous electron microscopic studies, e.g. by Karnovsky (1967)) Casley-Smith 
(1964, 1969)) Casley-Smith & Chin (1971)) Jennings & Florey (1967)) Bruns & 
Palade (1968), Simionescu, Simionescu & Palade (1973) and Stein & Stein (1973), 
and numerous theoretical models, e.g. by Shea, Karnovsky & Bossert (1969) 
and Shea & Bossert (1973)) to mention a few representative recent investiga- 
tions. These studies have been motivated in large measure by the possibly 
great importance that t,he transport of low density lipoproteins between the 
arterial lumen and the arterial wall might play in the incipient formation of 
atheromatous lesions in the larger arteries of humans and animals. This transport 
of macromoleculesis also of general interest in the metabolism of the arterial wall. 
The large body of experimental and observational evidence already gathered 
strongly suggests that the fundamental transport mechanisms present, which 
appear to be closely related to the highly specialized ultrastructure of the arterial 
endothelium and intima, provide a fertile area for new conceptual and quanti- 
tative theoretical models on the part of the fluid dynamicist. These experiments 
show that the rate of macromolecule transport is sensitive to a variety of 
mechanical factors such as flow, pressure oscillations, sinusoidal stretch and 
temperature changes, although the basic mechanisms for this enhancement 
remain to be elucidated. In the present paper a new hydrodynamic diffusion 
model is developed which describes the macromolecule transport across the 
arterial wall and its endothelium under the static loading conditions frequently 
encountered in in vitro perfusion experiments. 

Figure 1 ( a )  (plate 1) is a relatively low magnification (17 000 x ) transmission 
electron micrograph showing a small portion of the cross-section of a canine 
carotid artery which has been fixed at  a transmural pressure of 100mmHg. 
Proceeding inwards from the lumen one observes an endothelial cell with its 
nucleus, an underlying band of connective tissue, the internal elastic lamella, 
visible as a white layer, and finally, in the lower right-hand corner, the beginning 
of the arterial media, showing the interstitial fluid space and the roughly cuboidal 
smooth muscle cells. The arterial intima and media, which together comprise the 
bulk of the wall substance, contain many such layers of muscle cells. Their 
combined thickness for the specimen shown is roughly 2000 times the average 
thickness 32008 of the single layer of endothelial cells at  the luminal surface. 
Figure I ( b )  (plate 1)  is a higher magnification (65 000 x ) transmission electron 
micrograph of the border region of two overlapping endothelial cells. The two 
important ultrastructural features visible in this figure are the tortuous extra- 
cellular channel separating the two cells, whose width varies between approxi- 
mately 100 and 2008 ,  and the numerous nearly spherical vesicles of typical 
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diameter 700A. When free, these vesicles undergo a diffusional migration across 
the cell which is strongly influenced by a hydrodynamic and molecular force 
interaction with the plasmalemma membranes of the endothelial cell and perhaps 
to a lesser extent by interaction with other vesicles. When attached to the plasma- 
lemma of the endothelial cell, the vesicles are open to the luminal fluid and form 
a continuous part of the 75.& molecular phospholipid bilayer structure of the 
plasmalemma membrane. 

As first hypothesized by Palade (1960) and since confirmed by time-dependent 
electron microscopic tracer studies by Casley-Smith & Chin (1971) and Simionescu 
et al. (1973), the macromolecules are transported across the cell by the vesicles, 
which perform a ferryboat function. This process, called vesicular transport, 
proceeds in both directions. The vesicles fill in their open attached state, break 
off from their attaching stalks, migrate across the endothelial cell and reattach 
at the opposite plasmalemma, where they unload their contents. The time- 
dependent ultrastructural studies just mentioned reveal that the vesicles are 
attached long enough at both the luminal and abluminal surfaces to come to 
concentration equilibrium with the surrounding luminal and interstitial fluid 
respectively and that the macromolecules do not escape from the membrane- 
bound vesicles during their journey across the cell. 

The vesicles are seldom seen in the process of rupturing or attaching so it must 
be assumed that the characteristic time for this process is small compared with the 
average attachment time t ,  and the diffusion time tD required to cross the cell. 
The numerous depressions visible in the scanning electron micrograph of the 
endothelial surface (figure 1 c, plate 1)  strongly suggest that short-range mole- 
cular forces of attraction play an important role as the vesicle approaches the 
plasmalemma prior to reattachment. Electron microscopic studies (Jennings & 
Florey 1967) and perfusion experiments (Caro et al. 1975) with various metabolic 
poisons indicate that both the driving forces for the migration of the free vesicles 
and the rupture of the attached vesicles are passive in that their energy derives 
from mechanical as opposed to metabolic factors. The diffusional migration in 
the intracellular fluid would appear to be a Brownian motion arising from random 
thermal collisions. The characteristic time, velocity and distance typifying the 
random vesicle motions is derived in the next section. These calculations suggest 
that the rupture of the vesicle stalk in the attached state might be due to a small 
amplitude instability in the equilibrium force balance of the attached vesicle. 

Returning to the description of the intima, one observes in figure 1 (a )  that the 
interstitial fluid gap between adjacent smooth muscle cells is typically of the 
order of several thousand A and thus more than an order of magnitude larger 
than either the dimensions of the low density lipoprotein molecules or the width 
of the intercellular channels between adjacent cells in the endothelial cell layer. 
Electron microscopic tracer studies (Karnovsky 1967) show that the largest 
molecules which can pass through the tightest constrictions in the intercellular 
cleft are approximately 40B in radius. Thus, from the standpoint of the diffusion 
of macromolecules whose effective hydrodynamic radius is between 40 and 200 B 
(the upper limit is determined by the internal diameter of the vesicle attachment 
stalks) the ultrastructure of the endothelium and the arterial intima are polar 
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opposites. In  the arterial endothelium these macromolecules encounter a nearly 
infinite resistance in passing through the narrow intercellular space between the 
endothelial cells and traverse this layer primarily via the passive transport of the 
700A vesicles described previously. In  contrast, in the intima the macromole- 
cules, once released by the attaching vesicles at  the abluminal membrane, 
encounter a much smaller diffusional resistance in passing via the interstitial 
fluid between adjacent muscle cells than traversing the muscle cells themselves 
through vesicular transport or membrane diffusion. The macromolecules thus 
essentially bypass the dispersed cellular phase on the time scale of the charac- 
teristic interstitial fluid diffusion time. The dispersed cellular phase therefore 
contributes insignificantly to the diffusion across the arterial wall, but is probably 
the principal storage reservoir for the macromolecules for large times since its 
volume is roughly five times that of the interstitial fluid phase. This conceptual 
model of cellular tissue structure was first proposed by Hills (1968, 1970) in his 
studies of the uptake of gas molecules in lung capillaries and the passage of small 
solutes into the arterial wall. In the latter application all the complications intro- 
duced by the vesicular transport across the arterial endothelium, the essential 
feature of the macromolecule transport problem, can be neglected since these 
small molecules can easily pass through the intercellular clefts, whose per- 
meability for small molecule transport is at least two orders of magnitude larger 
than that of the vesicular transport route. 

In  the context of the overall mathematical model for the artery wall, the 
vesicular transport model for the endothelial cell layer appears as a novel 
boundary condition in the larger-scale model for the underlying tissue. While the 
ultrastructural studies of the endothelial cell layer have added immeasurably 
to our understanding of the vesicular transport process, these studies do not 
currently provide reliable quantitative measurements of the vesicle dynamics 
because of the difficulty in accurately determining how long it takes the fixative 
when injected in the circulation to reach the local tissue of interest and how 
quickly the fixation process proceeds. For example, observational estimates by 
different investigators of the average transendothelial diffusion time t,, the 
quantity of perhaps greatest interest in the vesicle transport studies, have 
differed by more than an order of magnitude, the recent studies of Casley-Smith & 
Chin (1971) and Simionescu et al. (1973) suggesting 3 and 60s respectively. 
A further complication is that most of the existing literature has concentrated on 
capillary endothelium, whose internal structure is significantly different from 
that of the arterial endothelium considered herein. For these reasons a new series 
of time-dependent ultrastructural studies is being planned by the authors in 
collaboration with Drs G. E. Palade and N. and M. Simionescu. A promising new 
procedure for estimating to, which is based on the composite hydrodynamic- 
diffusion model of the arterial wall and endothelium and the more accurate 
quantitative measurements presently available from macroscopic uptake studies 
with labelled albumin, is described in 5 5 .  

The next section presents a preliminary theoretical picture of the vesicle 
mechanics. Section 3 describes the basic dynamic model for the vesicular trans- 
port. Section 4 incorporates this vesicle transport model into the overall two- 
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phase diffusion model of the arterial wall. The theoretical solutions are presented 
in Q 5 and compared with Fry's (1973) data for the time-dependent uptake of 
labelled albumin in normal and injured carotid artery preparations. Section 6 
discusses future and related work. 

2. Preliminary theoretical considerations 
As a preliminary to the dynamic models of the vesicle diffusion presented in 

Q 3 ,  we shall first perform some simple calculations to estimate the characteristic 
velocity, distance and time of the individual excursions in the Brownian walk 
and briefly describe the existing statistical theories of the vesicle migration. 

The equation of motion describing the dynamic force balance on an individual 
neutrally buoyant vesicle in the interior of a cell is given approximately by 

tdi i  dr -- s 0 d7 (t - T)* 

d?i dii 
dt dt 

m-  = - m'- - 6npahU - 6a2(pp7r)* 

+ pvvm - 6npahDvC + &(to ,  ( 2 . 1 )  

where U, m and a are the velocity, mass and radius of the vesicle, p is the intra- 
cellular fluid density, which is assumed to be equal to the vesicle density, m' is the 
virtual mass of the vesicle (m' = Qm for an isolated sphere in an infinite fluid), 
,u is the intracellular viscosity, h is a hydrodynamic interaction parameter, which 
depends on the flow geometry, D and c are the diffusion coefficient and concentra- 
tion of the vesicles, FFrw is the van der Waals attractive force between the vesicles 
and the cell membrane and gS(ti) is the impulsive force arising from random 
thermal collisions at  times t i ,  where &(ti)  is the Dirac delta function. The forces 
on the right-hand side of ( 2 . 1 )  in the order in.which they appear are the virtual 
mass force, the Stokes drag force, the Basset force, the integrated London-van 
der Waals intermolecular force, the concentration driving force and the impulse 
force due to molecular collisions. 

On the shortest time scale, that of molecular collision, the impulse force 
accelerates the vesicle to its random thermal velocity. If the vesicle is in thermo- 
dynamic equilibrium with its surroundings, the average thermal speed of the 
vesicle uo after collision is given by ( 3 ~ T f m ) * ,  where K is Boltzmann's constant 
and T is the absolute temperature. The thermal speed at 37 "C of a 7OOA vesicle 
whose density is that of water is roughly 30 cm/s. 

Having been impulsively accelerated to the thermal speed uo, the vesicle is now 
decelerated by Stokes frictional resistance forces. A rough engineering estimate 
of the duration and the distance travelled in the ensuing motion can be obtained 
by neglecting all but the first two terms on the right-hand side of (2.1) and letting 
h = 1 and m' = i m ,  their values for an isolated sphere in an infinite fluid: 

m dufdt = - Qm duldt - 67rpua. ( 2 . 2 )  

The integral of ( 2 . 2 )  that satisfies the initial condition u,, = ( 3 ~ T / m ) t  is 

u = (F)  KT 4 exp(-Tt). 4npa 



616 

The distance travelled from the point of collision x = 0 is 
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The exponential decay time t, and the total distance x, travelled before the vesicle 
comes to rest (t  = 00) are, from (2.3) and (2.4), 

t, = m/4npa = pa2/3p, 

where m = $npa3. There is a t  present no reliable measurement of the intracellular 
viscosity of endothelial cells. Values used previously in the literature (Irani & 
Adamson 1958; Taylor 1965; Green & Casley-Smith 1972) span the range 
0.1-1.0 P. The corresponding values oft, and x, are 3 x 10-l2 < t ,  < 3 x s and 
0.09 < xe < 0.9B. t  Thus the motion is extremely short lived and has an ampli- 
tude which is small compared with the vesicle dimensions. In  contrast, the 
Brownian motion of 1 pm particles, which are readily observed in optical micro- 
scopy, shows deflexions which are of the same order as the particle dimensions. 

The above crude calculations provide some insight into the possible nature of 
the vesicle rupture process. The vesicle is a rather thick-walled structure, its 
interior fluid contents comprising only about 4 8 %  of its total volume. An 
attached thick-walled structure of this type is not likely to migrat6 far from its 
equilibrium position under the influence of many small displacements. This con- 
clusion is supported by electron micrographs, which rarely show the vesicle stalks 
to be highly distorted from their mean attached configuration. The most likely 
explanation of the vesicle release is that it is a fracture due to small amplitude 
impulsive loading. A reasonable hypothesis is that the vesicle's dimensions and 
its attached configuration are determined by membrane bending stresses in 
equilibrium with membrane electrical forces of London-van der Waals type, and 
that this equilibrium is unstable to small amplitude, high frequency disturbances 
such as thermal collisions. The increased uptake of labelled albumin with 
increasing temperature (Caro et al. 1975) and the preliminary small amplitude 
stretch studies performed by the authors in Caro, Lewis & Weinbaum (1974) are 
consistent with this hypothesis. In  the latter study excised artery segments were 
subjected to pulsed and sinusoidal small amplitude elongations of the same 
frequency and amplitude. The pulsed specimens showed only a marginal increase 
above controls, whereas the sinusoidally stretched segments experienced a near 
doubling in uptake. Since intracellular motions decay almost instantaneously 
after each pulse [this time is of the same order as t, in (2.5)], this suggests that the 
increased uptake in the sinusoidally stretched segments is due to a decrease in the 
vesicle diffusion time t, rather than the attachment time t,. The fact that t, is 
unaffected is consistent with the above discussion since the boundary velocities 

t Note added in proof. Equation (2.6) significantly underestimates the amplitude of a 
Brownian excursion because it neglects the Basset force term in (2.1).  More accurate ap- 
proximations to (2.1) which include the Basset force are currently being studied. These 
results show that the above values for 2, are one to two orders of magnitude too small. 
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Van der Waals force range 
(15-100A) 

FIGURE 2. Schematic illustration showing co-ordinates and geometry for mathematica 
model of plasmalemma vesicle migration across border region of endothelial cell. Dimen- 
sions shown based on canine carotid artery. 

generated in the pulsed case were still a t  most two orders of magnitude smaller 
than the random thermal velocity of the vesicles. 

The two fundamental physical features of the present vesicle diffusion problem 
that greatly complicate its dynamics are (i) that the vesicle is undergoing a very 
strong, spatially varying, hydrodynamic interaction with the plasmalemma 
membranes of the endothelial cell since its diameter 700 A is nearly a quarter of 
the average total intracellular diffusion distance 3200 A across the endothelial 
cell, and (ii) that the vesicle is released sufficiently close to the boundary (the 
intrusion distance is approximately 3 O O A ;  Shea et al. 1969) for lubricating film 
and van der Waals intermolecular force interaction effects to be imp0rtant.t 
A schematic illustration of the border region of an endothelial cell showing the 
pertinent dimensions and geometry for the vesicle diffusion problem is given in 
figure 2. 

While no dynamic model has been proposed to deal with the constrained 
Brownian diffusion problem just described, several statistical theories have been 
advanced based either on a continuum diffusion equation with uniform diffusivity 
(Tomlin 1969; Shea et al. 1969; Shea & Bossert 1973) or on a kinetic theory of 

t The exterior surfaces of many biological membranes have a small negative surface 
c h r g e  which in the presence of an ionic suspending medium causes an electric double 
layer to form in the vicinity of the surface. The extra-cellular channel is very likely due to 
a balance between the repulsive forces caused by this negative surface charge and the 
attractive van der Wads forces. Much less is known about the membrane electrical proper- 
ties in the interior of the cell. Very high magnification electron micrographs indicate that 
there is no equilibrium gap between the vesicle and the plasmalemma membrane prior to 
attachment, see sketch in figure 3 ( c ) .  This suggests that either electrical double layers are 
not present or non-uniformly distributed on the interior surface of the plasmalemma or that 
the surface charges are of opposite sign. In  this first model these surface electrical effects 
will not be considered, although this aspect of the model warrants more careful study. 
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350 8, 

(4 (4 
FIGURE 3. Sketch of proposed sequence of events leading to reattachment of free vesicles to 
plasmalemma membrane. (a) 2 > 200 A, hydrodynamic interaction. (6) x < 200 A, hydro- 
dynamic-van der Waalsinteraction. (c) Before stalk formation. (d )  Reattachedconfiguration. 

liquids approach (Green & Casley-Smith 1972). In  Shea et al. the importance of 
a finite intrusion distance or vesicle stalk length is recognized, since if the vesicle 
were released right a t  the plasmalemma, energy would be required to prevent it 
from immediately reattaching to this surface. The inadequacy of the simple 
statistical models presented in Tomlin (1969) and Shea et al. (1969), which predict 
a linear vesicle concentration profile across the endothelial cell, is clearly demon- 
strated in the time-dependent electron microscopic tracer studies of Casley- 
Smith & Chin (197 1) and Simionescu et aE. (1973). Both these observationalgtudies 
show that in the steady state the density profile of labelled vesicles crossing from 
the luminal to the abluminal surface changes much more gradually in the interior 
of the cell than near the plasmalemma on either side of the  endothelial cell, 
suggesting that the plasmalemma exhibits repulsive properties. 

Shea & Bossert (1973) and Green & Casley-Smith (1972) attempt to explain 
the more uniform distribution of vesicles in the cell interior by introducing a 
phenomenological wall reflexion coefficient. Shea & Bossert modify the theoretical 
model in Shea et al. (1969) by changing the wall boundary condition from that of 
a perfectly absorbing membrane to that of an imperfectly absorbing ‘elastic ’ 
barrier. This new model assumes that the vesicles have a finite probability of 
being repelled by the wall, in which case they are instantaneously returned some 
small specified distance into the interior of the cell. Green & Casley-Smith 
present a higher-order kinetic-theory approximation to the diffusion equation 
which includes a first-order correction for vesicle-vesicle interactions in more 
dense systems. However, the basic problem, the description of the vesicle motion 
in the vicinity of the boundary, is treated in an even more approximate manner 
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than by Shea &, Bossert (1973), where the important concept of a finite intrusion 
distance is retained in the statistical model. 

The basic hypothesis that the plasmalemma is an imperfectly absorbing 
barrier from which the vesicle is repelled by molecular forces is not consistent 
with the appearance of the plasmalemma surface in figure 1 (c) nor with current 
molecular models of the London-van der Waals electrical forces that are operative 
between biological membranes over distances between roughly 10 and 200 A. The 
usually accepted view is that these forces are attractive rather than repulsive in 
nature except for very short range molecular interactions, over less than 5-10& 
where very strong nuclear repulsive forces start to dominate; see for example 
Israelachvili & Tabor (1972). 

The authors have recently had the opportunity to examine the extensive 
collection of very high magnification transmission electron micrographs taken 
by Dr G.E.Palade and co-workers. Figure 3 is a schematic illustration con- 
structed from many electron micrographs of the sequence of events leading to the 
attachment of a free vesicle to the plasmalemma. When the fluid gap x between 
the vesicle and the plasmalemma is greater than approximately 2OOA the nearly 
spherical vesicle is being acted upon principally by concentration-gradient and 
hydrodynamic resistance forces, as shown in sketch (a) .  Since the hydrodynamic 
resistance force which must be overcome to squeeze out of the thin fluid layer 
between the vesicle and the plasmalemma is proportional to a/x for small gap 
widths, this force starts to grow very rapidly i s  the gap width decreases to less 
than a vesicle radius and is very likely responsible for the repulsive character of 
the plasmalemma suggested by the labelled vesicle density profile. In sketch 
( b )  the vesicle has approached close enough to the plasmalemma for the London- 
van der Waals molecular attractive force between the vesicle and plasmalemma 
membranes to be important. While the non-retarded attractive potential 
between individual molecules behaves as l / r6 ,  we shall show in the next section 
that the integrated attractive force summed over all interaction pairs be- 
haves as l/x4 and thus must overwhelm the hydrodynamic resistance force for 
small enough gap widths. In  the limit as x approaches zero the molecular attrac- 
tive forces eliminate the fluid gap entirely, as shown in sketch ( c ) .  Owing to the 
curvature of the vesicle, a large spatialIy varying stress is produced on both the 
vesicle and the plasmalemma membrane by the local hydrodynamic and mole- 
cular forces. The vesicle, being a relatively thick-walled structure, does not 
deform easily, whereas the plasmalemma first indents and then applanates as 
shown in sketches ( b )  and (c). The adhered configuration (c) is not stable a t  the 
molecular level and rapidly changes into the attached configuration ( d ) .  Very 
detailed examination of the transition to the attached configuration suggests 
that there is a radial outflow of membrane material with a small lipid remnant 
which is thickest in the centre of the newly formed stalk. This remnant appears 
to be short lived compared with the average life span t, of the vesicle in the 
attached state. It is reasonable to speculate that the molecular attractive forces 
acting across the neck of the vesicle provide a ring-like constraint which prevents 
the vesicle from disappearing entirely as a planar portion of the plasmalemma. 
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3. Dynamic models of the vesicle motion 
It is evident from the remarks of the previous section and the dimensions shown 

in figure 2 that the vesicle motion is characterized by two different length scales: 
a short length go, representative of London-van der Waals electrical forces, and 
a long length I ,  representative of hydrodynamic interaction forces, which in the 
present case can be taken as the transendothelial diffusion distance between the 
plasmalemma membranes. The mathematical model on the short length scale 
describes the final approach of the vesicle to the plasmalemma under the influence 
of concentration-gradient , hydrodynamic resistance and London-van der Waals 
forces. This model is used to define an effective cut-off distance for the van 
der Waals forces, which can be thought of as the apparent boundary for the 
diffusion model in the interior of the cell. The second model provides an 
accurate description of the spatially varying long range hydrodynamic 
interaction with both boundary membranes, but approximates the effect 
of the van der Waals force near the plasmalemma by the use of the effective 
cut-off distance just mentioned. 

3.1. Vesicle motion near plasmalemma 

Our first objective in this section is to develop an approximate mathematical 
model which describes the transition from the hydrodynamic-concentration- 
gradient force balance in the interior of the cell to the hydrodynamic-van der 
Waals force balance that holds as the vesicle approaches the plasmalemma prior 
to reattachment. This transition occurs over a length scale which is probably of 
the order of 200A and involves maximum velocity changes which are one to two 
orders of magnitude larger than the macroscopic diffusion velocity of the vesicle. 
Since this distance is large compared with the viscous stopping distance of a 
vesicle impulsively accelerated by thermal collisions [equation (2.6)], and the 
velocity is small compared with the random thermal velocity of the vesicle, it is 
reasonable to neglect the unsteady inertia and Basset force terms in the dynamic 
equation of motion (2.1) of the vesicle. The instantaneous quasi-steady-state 
force balance on the vesicle from (2.1) is given by 

0 = &/;.w-671Upoh(U-U~), (3.1) 

where uD = - Dc-l(dc/dx) is the vesicle diffusion velocity based on Pick’s law and 
u is the actual velocity of the vesicle. One notes that as Fr7n. approaches zero 
u approaches uD. 

The two key quantities in (3.1) that need to be determined are the hydro- 
dynamic interaction parameter h and the macroscopic London-van der Waals 
attractive force FrTm- between the vesicle and the plasmalemma. For present 
purposes it is reasonable to neglect the deformations of the vesicle and plasma- 
lemma membranes and to derive approximate expressions for both h and Frrw 
treating the vesicle approach as that of a spherical particle interacting with 
a planar boundary. For this simpler geometry, Cox & Brenner (1968) have 
developed an exact series solution for the quasi-steady-state Stokes drag on a 
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FIGURE 4. Sketch showing geometry and co-ordinates for evaluation of the van der Waals 
force integral, equations (3.4) and (3.5). 

1: h exaot l+; 
equation (3.2) 

1.020 51-594 
1.127 9.252 
1.543 3.036 
2.352 1.837 
3.762 1.413 
6.132 1.222 

10.06 1.125 

h approx. 
equation (3.3) 

51.00 
8.874 
2.842 
1.739 
1.362 
1.195 
1.110 

TABLE 1. Comparisonof approximate (3.3) and exact (3.2) (Cox & Brenner 1968) expressions 
for the Stokes correction factor h for normal approach of a spherical particle to a planar 
boundary. 

spherical particle of radius a as a function of the fluid gap x between the particle 
and the boundary; see figure 4. The expression for h derived from this result is 

3sinh (2n + 1) a+ (2n+ 1) sinh 2a n(n + l) [ 
- -'1'/ (3.2) 

h = Qsinha 2 
n=l (2n-  1) (2n+ 3 )  4sinh2 ( n +  &)a- ( 2 n f  1)2sinh2a 

a = cosh-l[(~+~)/a] .  

Expression (3.2) is still too complicated to use in the present analysis and obtain 
closed-form solutions. A surprisingly close approximation to this exact solution 
which greatly simplifies the analysis is given by the much simpler expression 

W 

h = l+a/x.  (3.3) 
Expression (3.3) approaches the Taylor lubrication formula as the gap width x 
goes to zero and the resnlt for an isolated single sphere as x becomes large. A com- 
parison between the approximate (3.3) and exact (3.2) expression for h is shown 
in table 1, where it may be seen that the maximum deviation for any value of 
x/a is about 5 %. 

A rigorous derivation of an expression for FTTm should take into account both 
the gradual shift with distance between the r-6 and r-' behaviour characterizing 
respectively the non-retarded and retarded induced dipole molecular interaction 
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potential, and molecular interference effects arising from multipsrticle inter- 
actions. This sophistication is well beyond the scope of the present treatment, 
which is based on the Lifshitz (1956) theory for binary molecular interactions 
and the idealized geometry shown in figure 4 .  The model further assumes that 
the molecules in the vesicle and plasmalemma membrane are concentrated at 
their respective surfaces and that only the molecules on the forward half of the 
vesicle adjacent to the plasmalemma contribute to the integrated macroscopic 
force. 

The force dFFTW on a differential area element of the vesicle surface d a  due to 
a non-retarded binary interaction potential integrated over all molecules a t  the 
plasmalemma surface is 

r m  k sin B(2nR) d a d R  = 3nk d a  J O  (R2+h2)$ hS * 
dFFrw = (3.4) 

Here h is the normal distance of the area element d a  from the plasmalemma, R is 
the radial distance from this normal and k is a constant which is proportional to 
the surface density of molecules and the polarization properties of phospholipid 
bilayer membranes. Summing the differential force over the entire frontal portion 
of the vesicle one has 

in sinqbdqb 
l$,w = 6n2a2k/ 

[x + a( 1 - cos #)I5’ (3 .5 )  

where the denominator of the integral is the distance h dehed  by the geometry 
in figure 4 .  The evaluation of the integral in (3 .5 )  is straightforward: 

Fvw = $n2k[xp4 - ( X  ( 3 .6 )  

Combining results (3 .3 )  and (3 .6 )  and substituting in (3 .1 )  yields 

0 = &r2ka[~-4  - (x + a)-4] - 6napO( 1 + a/.) (u - uD). (3 .7 )  

The constant k in (3.7)’ which is related to Hamaker’s constant, can be expressed 
in terms of fundamental membrane properties. However, these properties are 
difficult to measure experimentally. Instead of treating the constant k as an 
unknown free parameter in the theory it is more convenient to use k to define the 
characteristic length scale e0 for the London-van der Waals force interaction and 
then consider eo as the free parameter in the theory. One observes from (3 .7)  that 
when u = 2UD the London-van der Waals and concentration-gradient driving 
forces will be exactly equal. This distance x = eo thus provides a convenient 
definition of the characteristic reference length for the vesicle motion near the 
plasmalemma. This defhition of e0 leads to the following expression for k :  

Finally, substituting (3 .8)  in (3 .7 )  and simplifying, one obtains the desired result, 
an expression for the ratio of the actual approach velocity u of the vesicle to the 
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Figure 5 is a plot of (3.9) for two different values of a/eo ( E ~  = 25 and 1OOA) 
which are near the upper and lower limits that one might expect to find in an 
nedothelial cell. It is evident from this figure that the vesicle velocity u increases 
very rapidly as the gap distance narrows and that this behaviour is relatively 
insensitive to a/eo, at least when a/eo > 3.5. At x/eo = 0.5 the vesicle velocity is 
already more than 8 times the diffusion velocity and increasing at  a rate which is 
approximately proportional to (E,,/x)~, whereas at x/q, >/ 2.0, u is essentially 
equal to u,. This behaviour is, of course, a reasonable explanation of why vesicles 
are seIdom seen in the process of reattaching. When a/eo 9 1 equation (3.9) can be 
approximated by the much simpler equation 

u = uD[i + ( E o / 4 3 1 .  (3.10) 

3.2. Vesicle density profile near plasmalemma 

The approximate expression for u given by (3.10) can be used to derive a simple 
closed-form relation which shows the effect of the London-van der Waals force 
on the vesicle density distribution near the plasmalemma. In  the steady state, 
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the conservation equation for the vesicle number density c can be described by 
a continuum equation of the form 

(3.11) 

where uvw can be thought of as a convective velocity for the vesicles created by 
the macroscopic London-van der Waals force and D is a spatially varying 
diffusion coefficient which takes account of the increased hydrodynamic 
resistance of the vesicle as it approaches the plasmalemma. The continuum 
hypothesis is justified although the vesicle dimensions are of the same order as 
the characteristic near-field diffusion distance eo since xe/eo 1, where xe is the 
amplitude of the individual random thermal excursions defined in (2.6). 

The total velocity u which appears in (3.9) or (3.10) is the sum of uyrw and the 
vesicle diffusion velocity uD. The integral of (3.11) therefore states that in the 
steady state the total vesicle flux is a constant, i.e. 

cu = - A ,  (3.12) 

where A is a positive constant since u is in the -x direction. Combining (3.10) 
and (3.12) one obtains -=-[ dc A ( x / ~ ~ ) ~  ] 

dx  D(x )  l + ( ~ / e , ) ~  * 
(3.13) 

In  order that the Stokes-Einstein relation for the diffusion coefficient 

D = ~ R / 6 7 ~ p a ,  (3.14) 

which is valid for a dilute system of particles in an infinite medium, may be 
applied to the present flow configuration one must modify p to  reflect the hydro- 
dynamic interaction between the vesicle and the plasmalemma. We thus treat 
p in (3.14) as an effective viscosity coefficient defined by 

P = hP0, (3.15) 

where p0 is the actual fluid viscosity and h is the hydrodynamic interaction 
parameter [see (3.2) or (3.3)], which corrects the Stokes frictional resistance on 
an isolated sphere to that on a spherical vesicle whose flow geometry is shown in 
figure 4. From (3.14) and (3.15) a suitable approximation for D(x)  is 

a x )  = DO/W) ,  (3.16) 

where Do is the vesicle,diffusion coefficient in an infinite medium. 

Inserting this expression for D(x)  in (3.13) and integrating leads to the result 
When a/x B 1, h(x) from (3.3) is approximately equal to a/x and D(x)  % Do(x/a). 

cD0/aA = Q In [ 1 + ( x / B ~ ) ~ ]  + b,. (3.17 a) 

The constant A in ( 3 . 1 7 ~ )  is still unknown, but is determined by matching the 
behaviour of the solution ( 3 . 1 7 ~ )  for x/eo 9 1 with the large-scale solution for the 
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FIGURE 6. Dimensionless concentration profile near plasmalemma. Solid curve, equation 
( 3 . 1 7 ~ )  withb, = 0;  dashed curve, limiting behaviour of equation (3.17b) for x/eo  %- 1 and 
x1/co = 0; horizontal broken line, abscissa for zl/e0 = 0.2. 

vesicle density distribution in the interior of the-cell. The constant of integration 
b, is determined by requiring the free-vesicle concentration to vanish at  the 
distance of closest approach xl/c0 of the vesicle to the plasmalemma before 
reattachment. Substituting this value of b, back into (3 .17a)  leads to 

(3 .17b)  

In  figure 6 we have plotted (3 .17b)  with x,/e, = 0. The dashed curve in this 
figure is the asymptotic behaviour of (3.17 b )  for x/eo 9 1 extrapolated back to the 
abscissa. This is the behaviour that would occur if the London-van der Waals 
forces were neglected and thus represents the continuation of the solution curve 
for the vesicle density profile in the interior of the cell to the c = 0 axis when 
xl/eo = 0. For other values of xl/co the c = 0 axis is simply shifted upwards till it 
intersects the solid curve at  the desired value of xl/eo. The broken horizontal line 
in figure 6 represents such a shift for the case xI/co = 0.2. The effective inward 
displacement Ax of the boundary as seen by the solution in the cell interior for 
any value of xI/eo is given by 

AX = eo[l + ( ~ ~ / e ~ ) ~ ] * .  (3 .18)  

The dimensionless distance e = Ax/ l ,  which plays the same role as a displacement 
thickness in fluid boundary-layer theory, will be defined as the London-van der 
Waals force cut-off distance for the large-scale solution in the cell interior. 

40 = = M  74 
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3.3. Vesicle diffusion in the cell interior 

The continuum equation describing the steady-state diffusion in the cell interior 
of vesicles released a t  the luminal surface is 

(3.19) 

where D(x)  is a spatially varying diffusion coefficient which considers the hydro- 
dynamic interaction with both boundaries and x is a normalized co-ordinate 
which is scaled relative to the actual diffusion distance I between the plasma- 
lemmas, which for the dimensions shown in figure 2 is approximately 2500A. 
The region of validity of (3.19) excludes the vesicle release point x = y and the 
small regions 0 < x < e and 1 - E < x < 1 near each plasmalemma, which are 
defined by the apparent-boundary concept or effective London-van der Waals 
cut-off distance described in 9 3.2. Thus, as shown in figure 6, we require that the 
free-vesicle density vanish at a distance E from each boundary, i.e. 

C(E) = 0, c(1-6) = 0. (3.20) 

The special treatment of these small regions is important even though E 4 1 since 
the hydrodynamic resistance is rapidly varying as one approaches the edges of 
the cell. 

At x = y,  the average intrusion distance for vesicles released from the luminal 
membrane, the concentration of free vesicles is continuous, 

c(Y-) = C(Y+), (3.21) 

but there is a discontinuity in concentration gradient given by 

dc dc 
(3.22) 

Here 4 = Na/ta is the vesicle release rate per unit area of luminal surface and N, 
is the number density of attached vesicles. Equation (3.19) is also valid in the 
range E < x < 1 - y and 1 - y < x < I - e for vesicles released at  the abluminal 
surface, where at  x = 1 - y equivalent matching conditions to (3.21) and (3.22) 
hold. Statistical studies performed by Bruns & Palade (1968) and Casley-Smith 
(1969) for the number-density profile of free vesicles in the cell interior and 
attached vesicles at  each plasmalemma show that the vesicle transport is nearly 
symmetric. 

In  accord with our previous approximation for A, equation (3.3) for the per- 
pendicular motion of a spherical vesicle near a planar boundary, we shall approxi- 
mate h for the normal motion between two parallel walls by 

a a  
x 1-x '  

h(x) = 1 + - + - (3.23) 

Using this approximation for h in (3.17) and substituting the resulting expression 
for D(x)  in (3.19) one obtains 

(3.24) 
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FIGURE 7. Theoretical solution for dimensionless steady-state concentration distribution 
of free vesicles released at luminal membrane for representative values of the effective van 
der Waals cut-off distance B based on equations ( 3 . 2 5 ~ ~ )  and (3 .25b) .  

The solution to (3.24) which satisfies the boundary and matching conditions 
(3.21)-(3.23) is 

(3.25a) 

c(x) = 
. _ .  r XE 1 

where F(a, y, e) is an interaction function which depends only on the geometry of 
the flow configuration and the effective London-van der Waals cut-off distance: 

y+s-  l+aln[ys/(l-y)(l-s)] 
2s - 1 + 2a In [s/( 1 - s)] P(a,y,s) = (3.26) 

The unknown constant A in the solution for the vesicle density distribution near 
the plasmalemma can now be determined by matching the behaviour of (3.17) 
for large values of x/so with the behaviour of (3.25a) as x approaches e. The value 
of A determined in this manner is 

A = l@(a,y,€). (3.27) 

The dimensionless concentration profile given by (3.25) is plotted in figure 7 
for four representative values of 6.  It is evident from this figure that the smaller 
the value of E the larger the concentration gradient of vesicles in the vicinity 
of the plasmalemma membrane and the larger the total free-vesicle population 
(the area under the concentration curve) for a fixed source strength q5. In 

40-2 
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FIGURE 8. Theoretical solution for the fractional flux q 5 ~ / q 5  of vesicles crossing the cell and 
the ratio .$,/to of vesicle attachment to diffusion times as a function of B based on equations 
(3 .28b)  and (3.29). 

essence, the more closely the vesicle can approach the plasmalemma before 
coming under the influence of strong London-van der Waals forces of attraction 
the greater the retarding effect of the viscous redstance in the narrowing fluid 
gap between the vesicle and the wall. The cone tration profile which bears the 
closest qualitative resemblance to the st dy-state vesicle concentration 

studies is the solution for B = 0.006. This corresponds to a cut-off distance of 
about 15A. 

One can show from (3.22) and (3.25) that the fraction $L/$ of the vesicles 
released that return to the luminal membrane and the fraction $R/# that are 
transported across the cell are given by 

$L/$ = F(a, !/, €), d R / $  = -F(a, !/, €1. (3.28 a, b )  

Results (3.28a, b )  are more convenientlywritten in terms oft,, tDand the densityNf 
of free and the density Nu of attached vesicles per unit area of endothelial surface. 
Assuming that the transport across the cell is symmetric, $R = N,/2tD, where the 
factor 4 enters #R since only half the free vesicles are diffusing towards the 
abluminal surface. Inserting these expressions into (3.28) one finds 

t,/tD = 2(Nu/Nf) ( l -F (a , y , s ) )*  (3.29) 

The vesicle number flux $R per unit area across the endothelial cell layer can 
be conveniently written in terms of the total vesicle population N per unit area of 
endothelial surface. From (3.28), (3.29) and the definition N = 2N,+Nf, 

$R = N (  1 - F)/2[tu + to( 1 - F ) ] .  (3.30) 

profiles observed by Casley-Smith & Chin ( 1  i 7 1)  in their electron microscopic 



Macromolecule transport model for the arterial wall 629 

In figure 8 we have plotted the theoretical predictions of (3.38) and (3.29) for 
the variations of $R/$ and t,/tD as a function of B .  The actual counted values of 
Nu and N, given in Casley-Smith (1969) vary somewhat between different endo- 
thelial cells, with the result that Na/Nf lies in the range 0.417 < Na/Nf < 0.714. 
The dashed curves for €,IfD in figure 8 correspond to these lower and upper limits 
respectively. If Ax in (3.18) is 15A this means that t ,  is somewhere between 0.15 
and 0.29 of to. The ratio t,/tD is proportional to $R/$ and in general decreases as 8 
increases for a fixed value of Na/Nf. This behaviour as a function of B is expected 
since the likelihood that a vesicle will not reattach at  the same surface from which 
it was released and hence cross the cell increases the further a is removed from the 
release point x = y. 

The dimensionless concentration cD,/$l and the flux ratios $L/$ and $R/# are 
all independent of the intracellular viscosity po. This is an important result since 
as noted previously there is considerable uncertainty in the actual value of po 
and hence Do. On the other hand, the absolute value of the transendothelial flux 

and the ratio of t,ltD do depend on ,uo since the vesicle population ratio NUIN, 
is a function of po. 

The two key results of this section are (3.29) and (3.30) for the ratio t,/tD and 
the vesicle number flux $R. For the reasons stated in the introduction direct 
observational estimates of t D  are at  present unreliable. The principal quantitative 
applications of the theory for the moment are the time-dependent uptake experi- 
ments with albumin and other labelled macromolecules, using the composite 
diffusion model for the arterial wall developed in the next section. Equation (3.30) 
will be used to construct the interface boundary condition (4.3) for this model, 
while (3.29) will be used in the derivation of the new expression (4.32) for the 
vesicle diffusion time t D .  

4. Composite diffusion model for the arterial wall 
We should now like to incorporate the solution for the vesicle number flux $R 

given by (3.30) into an overall transient diffusion model for the arterial wall. 
Figure 9 is a diagrammatic sketch of this proposed model based on the electron 
micrograph figure l(a).  For dog common carotid artery the inner endothelial 
lining is approximately 0.0005 of the total wall thickness. In our simplified 
mathematical model the endothelium is treated as a vanishingly thin layer 
located at the origin of a one-dimensional co-ordinate system and the smooth 
muscle cells in the underlying tissue as a uniformly distributed array of identical 
cells. 

The dimensionless partial differential equations governing the one-dimensional 
tiansient diffusion of macromolecules in the interstitial and intracellular phases 
are ac, awl  

a7 ax2 
CI - - - = p(c 2 -c 1 ,  ) 

a2 ac21aT = p(c, - c,). 14.2) 

Here C, and C, are the dimensionless concentrations in the interstitial and 
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, Endothelial cell layer 

FIGURE 9. Schematic illustration for two-phase mathematical model of the arterial wall 
for transient diffusion and uptake of macromolecules. Dimensions based on canine carotid 
artery. 

dispersed cellular phases, respectively, scaled relative to the concentration cP in 
the arterial lumen, ai is the volume fraction occupied by each phase, 7 and X are 
dimensionless time and distance co-ordinates, 7 = tDm/L2 and X = z/L,  where 
Dm is the macromolecule diffusion coefficient in the interstitial fluid, and p is a 
dimensionless number defined by ,8 = PL2/D,,, where P is a membrane per- 
meability coefficient for the molecular diffusion of the macromolecules into the 
dispersed cellular phase. A plausible membrane molecular structure which 
facilitates this diffusion is described in the fluid mosaic model of Singer & 
Nicolson (1972). Thus /3 represents the ratio of the membrane diffusion flux into 
the dispersed cellular phase to the molecular diffusion flux in the interstitial 
fluid. The right-hand side of (4.1) describes a uniformly distributed continuum 
of point sinks whose strength is proportional to the local concentration difference 
between the two phases. Equation (4.2) for the dispersed cellular phase assumes 
that vesicular transport and membrane molecular diffusion across the smooth 
muscle cells do not contribute significantly to the total macromolecule transport 
across the wall and that the time constant for the equilibration of the intracellular 
contents is short compared with the interstitial fluid diffusion time. These condi- 
tions are satisfied for large arteries where the dimensions of the muscle cells are 
?.mall compared with the wall thickness. This mathematical description is 
consistent with the ultrastructural specialization discussed a t  the end of the 
introduction. 

The important feature of the present boundary-value problem which differ- 
entiates it from the heterogeneous tissue model developed by Hills (1968, 1970) 
is the vesicular transport boundary condition imposed by the thin surface layer 
of endothelial cel1s.t If c p  and c(0) are the dimensional macromolecule concentra- 
tions at the luminal and abluminal surfaces of the endothelial cell layer respec- 
tively and V is the internal volume of the vesicles, then the net macromolecule 

'f The authors were unaware of Hills's model when the present theory was developed 
and would like to  thank M. J. Lever for first bringing i t  to  their attention. 
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flux across the endothelium due to the vesicle transport is q5E V(C,  - c (O) ) ,  where 
q5R, the transendothelial vesicle number flux in either direction, is given by (3.30). 
If the macromolecule flux down the intercellular clefts and filtration flow in the 
interstitial fluid are both assumed negligible, then this net vesicle flux must be 
equal to the molecular diffusive flux at the abluminal tissue interface. The non- 
dimensional boundary condition a t  x = 0, the interface, is thus 

- ac,/ax = a( 1 - C,(O)), (4.3) 

where a = $R VLID, is a dimensionless number characterizing the vesicular 
transport. For an injured artery whose endothelium has been removed (4.3) is 
replaced at X = 0 by 

Boundary condition (4.3) is analogous to that for a high resistance film in heat- 
transfer problems. 

The usual boundary condition a t  X = 1, the adventitial surface, for in vitro 
experiments is 

This corresponds to a dilute, well-mixed outer bathing solution. The usual initial 
conditions for an in vitro experiment are 

C,(O) = 1. (4.4) 

C1(1) = 0. (4.5) 

C1(X, 0) = CZ(X, 0) = 0. (4.6) 

4.1. Solution for normal artery 

The boundary- and initial-value problem for a normal artery is defined by 
(4.1)-(4.3), (4.5) and (4.6). The solution for the interstitial fluid concentration C, 
is conveniently written as a linear superposition of a time-independent solution 
C,, which satisfies the inhomogeneous boundary condition (4.3) and a transient 
solution el which obeys homogeneous boundary conditions but inhomogeneous 
initial conditions. Thus we let 

C,(x, 7) = Ci(X, 7) + Csl(x), (4.7) 

where C,,, el and C, satisfy the following equations and boundary and initial 
conditions derived from (4.1)-(4.6). For C,, we have 

(4.8) 

(4.9) 

d2C,JdX2 - PC,, = 0, 

- dC,,/dX = a( 1 - C,,(O)), x = 0, 

c,, = 0, x = 1. 
For el and C, we have 

(4.10) 

(4.11) 

(4.12) 

(4.13) 
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The solution to (4.8) which satisfies boundary conditions (4.9) and (4.10) is 
given by 

(4.17) 

Substituting (4.17) into (4.7), one assumes series solutions for C, and C, of 
the form 

usinh[P&(l-X)] + Z An(7) sin A,( 1 - X ) ,  (4.18) 
usinhP4--pBcosh@ n=l 

CI(X,T) = 

m 

n=l 
Cz(X,7)  = C Bn(7)sinA,(l -X), (4.19) 

where A,(T) and Bn(7) are unknown functions to be determined and the A, 
comprise an ordered series of eigenvalues which are derived from the homo- 
geneous boundary conditions (4.13) and (4.14). These eigenvalues satisfy the 
algebraic relation 

tanh, = --AJu. (4.20) 

To determine A,(7) and B,(7) we first express the solution for C,, given by 
(4.17) as a Fourier series in the fundamental eigenfunctions sin An( 1 - 3) : 

03 

C,,(X) = C a, sin A,( 1 - X ) ,  
n= 1 

(4.21) 

where the evaluation of the coefficients a, is tedious but straightforward. The 
final result is 

( 4 . 2 1 ~ )  

By substituting the infinite series representations (4.18), (4.19) and (4.21) into 
(4.11) and (4.12), one obtains the following differential equations for the A ,  

(4.22) and B,: 
a , d A , / d ~ + h : A ,  = P(B,-A,), 

012dB,/d~+P(B,-A,) = pa,. (4.23) 

The solutions of (4.22) and (4.23) which satisfy the initial conditions (4.15) 
and (4.16) are 

(4.24) 

where P + Gi a2kn1+ P 
= an ICn2 (x) ( k,, - k n 2 )  ' 

(4.26) 

The exponential decay constants k,, and k,, correspond to the plus and minus 
signs in (4.27) respectively. This completes the solution for the unknown functions 
4(7) and B,(7) in the series solutions (4.18) and (4.19) for the concentrations 
C, and C, in the interstitial fluid and dispersed cellular phase respectively. 
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For very large times the solutions for C, and C, approach an asymptotic 
behaviour that is independent of 7.  This asymptotic solution 

(4 .28)  

reveals that in the steady state the interface concentration is given by a/( 1 + C T ) .  

The ratio of the resistances Re and R, offered by the endothelium and the arterial 
wall in the steady state is simply the ratio of the concentration drop across the 
endothelium to that across the rest of the arterial wall. From (4 .28)  

v 
C,(X,  co) = C,(X, 00) = - (I-X) 

l+CT 

RJR, = l/a, (4.29 

The integrated uptake of labelled macromolecules present in the artery wall a t  

M = C,(X, 7) dX + a2 (4 .30 )  

time 7 is 

The integrals in (4 .30)  are given by 

“ A  7 + c -  ,( ’(1-cos A,), (4 .31a)  
n=l An 

(4 .31b)  

where A,(T) and B,(T) are the coefficients (4 .24)  and (4 .25) .  
The two unknown parameters a and ,8 which appear in the solution for the 

integrated uptake, (4 .30)  and (4 .31 ) ,  need to be determined experimentally. The 
parameter /3 will be determined by curve fitting the theoretical and experimental 
uptake curves for an injured artery in which the endothelium has been removed. 
These solutions, which are presented next, are independent of CT since the vesicle 
flux boundary condition (4 .3 )  is replaced by boundary condition (4 .4 ) .  The value 
of CT is now determined by curve fitting the uptake data for a normal artery. This 
value of CT is one of the most important results of the present model since it can be 
used to obtain an improved estimate of the vesicle diffusion time t,, which at  the 
moment is known only to order-of-inagnitude accuracy from time-dependent 
ultrastructural studies. Combining the definition CT = (6R VL/Dm, the solution 
(3 .30)  for the vesicle flux (6R and expression (3 .29)  for the ratio t,/tD one obtains 

N V L  
t -  
- 2aDm( 1 + 2N,/Nf)‘ 

(4.32) 

Using currently available uptake measurements t ,  can be estimated from (4.32) 
to within roughly a factor of two. 

4.2.  Solution for injured artery 

The boundary- and initial-value problem for an injured artery whose endothelium 
hasbeenremovedisdehed by (4 .1 ) ,  (4 .2 )  and (4 .4) - (4 .6) .  The solution procedure 
parallels that just developed for a normal artery with intact endothelium. The 
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formulation of the boundary- and initial-value problems for C8,, and C, differs 
only in that (4.9) is replaced by C8(0) = 1 and (4.13) is replaced by the homo- 
geneous condition C?,(O, 7) = 0. We shall give only the final results. 

8. Weinbaum and C. G. Car0 

The new series solutions for C, and C, are of the form 
00 sinh [pi( 1 - X)] 

C,(X,T) = x A,(~)sinh,X+ > 
PJ n=l 

(4.33) 

(4.34) 

A,=nn, n = l , 2  ,..., co. (4.35) 

n = l  
where the A, are the eigenvalues 

The solutions for the coefficients A,(T) and B,(7) in (4.33) and (4.34) are again 
given by (4.24) and (4.25) except that the constants kni, a, and A,, are changed. 
The new decay constants k,, are given by (4.27) with the eigenvalues for A, the 
ordered roots (4.35). The expression for the Fourier coefficient a, in the infinite 
series representation of the second term in (4.33) is 

s,’sinh [pi( 1 - X)] sin (A,X) dX 

sinh /3hl: sin2 (A, X) dX 
(4.36) 

2n7r a, = =--- p + n27r2’ 

and the value of A,, given by (4.26) is modified according to the above results. 

(4.30), where the integrals of the concentration are now 
The integrated uptake of labelled molecules by the arterial wall is given by 

( 4 . 3 6 ~ )  

(4.36 b) 

The above solutions for our model of a two-phase injured wall will be compared. 
in the next section with the solutions for a homogeneous single-phase wall. The 
latter solutions, for p = 0, are given in Carslaw & Jaeger (1  959) : 

-- 4 
C,(X, 7) = 1 - X - 2 - exp ( - n2n27/cx1) sin nrX, ,=, nn 

4a, 
exp ( - nz7r7/al). M ( 7 ) = - -  2 - a, 

n=1,3,5 ... (nn)2 

(4.37) 

(4.38) 

Note that the volume fraction a, has been retained in (4.37) and (4.38) so that the 
comparisons can be drawn on the basis of equal volumes. 

5. Numerical results and comparison with experiments 
At the time of writing experimental data were not available to perform a 

detailed comparison with the concentration profiles for a normal and injured 
artery predicted by (4.21) and (4.22), and (4.33) and (4.34). Experimental data 
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FIGURE 10. Comparison of theory and experiment (Fry 1973) for the time-dependent 
uptake of labelled albumin in normal and injured (endothelium removed) dog carotid 
artery. Values of M scaled relative to uptake in injured artery at t = 5 min. Theoretical 
curves based on equations (4.30) and (4.31) or (4.36). 

do exist, however, for the time-dependent integrated uptake of a relatively inert 
macromolecule, labelled albumin, in excised preparations of dog common carotid 
artery using both radioactive tag (Caro et al. 1975) and Evans Blue dye (Fry 
1973) techniques. These data have been used to estimate b, (r and the three 
characteristic diffusion times describing the vesicle transport across the endo- 
thelium and the macromolecule diffusion in each phase of the wall substance. 

The procedure for determining /3 and (T described earlier is applied in figure 10 
to Fry’s experimental data for the time-dependent uptake of albumin, labelled 
with protein binding Evans Blues dye, in in vitro preparations of normal and 
injured canine carotid artery specimens. The injured preparations have had 
their endothelium removed by gentle stroking with a camel-hair brush. The 
theoretical uptake curves are given by (4.30) and (4.31) or (4.36) for the normal 
and injured artery respectively. The /3 = 0 solution curve is given by (4.38). 
All uptake results have been normalized by the integrated uptake M5 in the 
injured wall at t = 5 min. 

The theoretical curves for the injured wall provide an optimum fit with the 
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experimental data when p = 1.0. One notes that, if there were no dispersed 
cellular phase (the /3 = 0 solution curve), the interstitial fluid pool would become 
saturated after about 40min. The dispersed cellular phase is thus required to 
predict the more gradual increase in uptake characteristic of the larger time 
( t  greater than roughly 30 min) experimental data. 

For short times, t less than about 10 min, the effect of the long time intracellular 
capacitance and the finite dimensions of the wall are both negligible, and the 
artery wall with the endothelium removed exhibits the t* behaviour characteristic 
of a semi-infinite pure substance. Thus, for these short times the wall uptake is 
independent of p and determined only by the molecular diffusion coefficient D,,. 
The scaling of the dimensionless time 7 in the theoretical solution is therefore 
conveniently determined by requiring exact numerical agreement between theory 
and experiment for all values of p at the first data point, t = 5 min. The dimen- 
sionalreference time L2/D,established in this manner is 4.0 x lo* s. If  L = 0.5 mm 
this yields D, = 6.25 x 10-8cm2/s.t After 80min, the longest duration of the 
experiment, the interstitial fluid pool is completely filled whereas the intracellular 
pool has filled to only about 7 yo of its total capacitance, assuming a value for a1 
of 0.15. Using the value p = 1.0 just determined, we plot the theoretical solution 
curves for the normal artery treating cr now as the free parameter. As observed 
in figure 10, a reasonably good fit of the experimental data is obtained for 
cr = 0.2. The steady-state resistance to macromolecule transport of the thin layer 
of endothelial cells a t  the luminal surface is therefore, from (4.29), about five 
times that of the whole of the rest of the wall. 

The three characteristic times describing the overall transport behaviour of 
the arterial wall can be estimated from the values of p and r~ just determined and 
(4.32). In  evaluating to from (4.32) we have used a value for N of 480 vesicles/ 
pm2 (Bruns & Palade 1968), a free-to-attached vesicle density ratio Nf/Na of 2, 
an interior vesicle volume based on an internal radius ai = 275 A and the afore- 
mentioned values of L, v and D,. One finds that to is 8.3 s. Fry, in repeating the 
experiments shown in figure 10 with a doubly tagged albumin molecule, has 
observed that the initial rate of growth ( t  < JOmin) of the wall uptake in the 
wounded artery specimen, using the double tagging procedure, is substantially 
less than that shown in figure lo.$ These new unpublished data suggest that the 
value of D, calculated earlier is 2-3 times too large. A revised estimate of to using 
this corrected value for Dm in (4.32) is approximately 20s. This downward 
correction for D, is also consistent with the recent data of Caro et al. (1975) using 
1125 labelled albumin. The latter study indicates a roughly fourfold increase in the 
uptake of labelled albumin in the injured artery after 10min rather than the 
more than tenfold increase noted in figure 10. The above estimate for to lies 

t D ,  is not the same as the average wall permeability coefficient P, usually quoted in 
perfusion studies. The latter is defined as the number of counts per second per cm2 of sur- 
face area of specimen divided by the time times the number of counts per cm3/s of incu- 
bating fluid and has the units cm/s. P, thus represents a diffusion coefficient per unit wall 
thickness. Correcting for the effective fractional area occupied by the interstitial space and 
dividing by the wall thickness one obtains P, = 3 x 10-7 cm/s. 

$ Private communication. 
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FIGURE 11. Comparison of theoretical concentration profiles in injured artery wall with 
(solid curves, /? = 1-0) and without (dashed curves, p = 0) dispersed cellular phase. 
C, = concentration in interstitial fluid, from equation (4.33) for p = 1.0, from equation 
(4.37) for p = 0 ;  C2 = concentration in dispersed cellular phase, from equation (4.34). 

between the 3-5s estimate of Casley-Smith & Chin (1971) and the 45-60s esti- 
mate of Simionescu et al. (1973) using observational electron microscopic tracer 
studies of mouse cardiac and rat capillary endothelium respectively. The charac- 
teristic reference time for the filling of the interstitial fluid pool is given by 
a1L21D,. Estimates for this time vary between approximately 3Omin and l k h  
depending on the value of D, used. A rough estimate of the time required to fill 
the dispersed cellular phase can be obtained by continuing the /3 = 1.0 solution 
curve to very large times. One finds that the intracellular phase is about 95 yo 
filled after 72 h. 

More detailed insight into the behaviour of the injured wall can be gained from 
the concentration profiles shown in figure 11.  The dimensionless time ./a1 = 0-1 
corresponds to about 1Omin in the real time co-ordinate plotted in figure 10. It is 
evident from figure 11 that the dispersed cellular phase acts as a continuously 
distributed sink which for the value /3 = 1.0 has only a small effect on C,. The 
maximum deviation occurs when 7/a1 is O( 1). At this time C, has approached a 
quasi-steady-state distribution which is not quite linear because of the slow 
leakage into the intracellular phase, whereas C, is still far removed from its final 
steady-state distribution, which is achieved over a much longer time scale. 

The dramatic differences in the time-dependent uptake of labelled albumin 
in injured and normal canine carotid artery observed in figure 10 can be explained 
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FIGURE 12. (a) Comparison of theoretical concentration profiles in interstitial fluid 
phase. - - -, normal artery wall, equation (4.18); - , injured artery wall, equation 
(4.33). (b )  Comparison of theoretical concentration profiles in dispersed cellular phase. 
_ - -  , normal artery wall, equation (4.19); __ , injured artery wall, equation (4.34). 
p = 1.0, 0- = 0.2. 

with the aid of the concentration profiles shown in figure 12. The striking 
difference between the two sets of curves is the greatly reduced level of the 
concentration C(0) at the abluminal interface in the normal artery. For ./a1 < 0.1 
the area under the C, curve for the normal artery increases nearly linearly with 
time since from (4.3) the macromolecule flux across the interface is nearly con- 
stant and whatever enters is almost completely stored in the interstitial fluid 
pool. For intermediate times the finite thickness of the wall becomes important 
as well as the capacitance of the intracellular phase. The flux across the interface 
does not change substantially since the dimensionless concentration difference 
1 - C(0) across the endothelium in (4.3) varies between 1 and 0-83, its steady-state 
value for CT = 0.2; see (4.28). This flux is partially absorbed by both phases of the 
wall capacitance and partially transitted across the wall, where it is lost to the 
surrounding environment. 
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6. Concluding remarks 
The principal objective of the present investigation has been to develop a 

plausible mathematical model for the transport of relatively inert macromole- 
cules in the arterial wall under static in vitro conditions which considers the 
highly specialized ultrastructural function of the arterial endothelium and 
underlying tissue. This model is intended to provide the framework for more 
detailed theoretical and experimental studies in which the chemical kinetics of 
degradable macromolecules are important and various mechanical disturbances 
are introduced such as flow, pressure oscillations and periodic mechanical stretch. 
All these complications are, of course, present in  situ. The initial experiments 
performed by the authors reported in Car0 et al. (1974) strongly suggest that 
mechanical disturbances have an important influence on the uptake of macro- 
molecules by the wall owing to the hydrodynamic interaction between thevesicles 
and the deformation of the endothelial cells produced by the mechanical 
disturbances. 

A number of important new problems in mechanics have been identified, such 
as the equilibrium force balance that determines the size and shape of the attached 
and free vesicles, the nature of the instability that leads to the rupture of the 
vesicle stalks, the proper treatment of the London-van der Waals force inter- 
action between the vesicle and the deforming plasmalemma boundaries of the 
cell, and the generalization of the vesicle diffusion equation which allows these 
forces to be taken into account, For the unsteady mechanical disturbances 
mentioned above, one is especially interested in the nature of the intracellular 
fluid currents that are generated by the deformation of the endothelial cell and 
the importance of viscoelastic behaviour of both the endothelial membrane and 
the intracellular contents. The fundamental processes that cause the enhanced 
vesicle transport when unsteady mechanical disturbances are present constitute 
an important area for new research. 

The authors wish to express their gratitude to C.T.Lewis, G.E.Palade and 
M. and N. Simionescu for their valuable contributions to the electron microscopic 
aspects of the present theoretical study, M. J. Lighthill, K. Parker and T. Pedley 
for many helpful technical comments and R. Oxenham for all the computational 
results. The investigation was supported in part by the Medical Research Council 
and British Heart Foundation. S. Weinbaum was a Senior Visiting Fellow of 
the Scientific Research Council for the academic year 1973-1974, during which 
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FIGURE 1. ( a )  Transmission electron micrograph of endotIielia1 cell ( e )  and underlying 
tissue structure, x 17000: nucleus (n). 700 A vesicle ( v ) ,  connective tissue (c), internal 
elastic lamella (ie), interstitial fluid space (s) and smoot,li muscle cells ( m ) .  Transmural 
prqssure 100 mmHg. ( b )  Transmission electron micrograph of border region of two over- 
lapping endothelial cells showing free migration of 700 A vesicles and intercellular channel 
(arrow). Transmural pressure = 300 mrnHg. Bar = 0.5 pin. (c) Scanning electron micro- 
graph showing border region of two endothelial cells, with openings of attached plasma- 
lemma vesicles (arrows) and depressions indicating attractive London-van der Waals 
force interaction between vesicles and plasmalemma prior to attachment. Transmural 
pressure = 100 mmHg. Bar = 0.2 pm. 


